
DLD & CO
Unit-3

Part-2

Registers and Counters 



Syllabus

• Registers

• Shift Registers

• Counters



Introduction

• A clocked sequential circuit consists of a group of
flip‐flops and combinational gates.

• The flip‐flops are essential because, in their
absence, the circuit reduces to a purely
combinational circuit.

• A circuit with flip‐flops is considered a sequential
circuit even in the absence of combinational
gates.

• Circuits that include flip‐flops are usually
classified by the function they perform rather
than by the name of the sequential circuit.

• Two such circuits are registers and counters.



Register

• A register is a group of flip‐flops, each one of
which shares a common clock and is capable
of storing one bit of information.

• An n‐bit register consists of a group of n
flip‐flops capable of storing n bits of binary
information.

• In addition to the flip‐flops, a register may
have combinational gates that determine how
the information is transferred into the register.



Counter

• Counters are a special type of registers.

• A counter is essentially a register that goes
through a predetermined sequence of binary
states.

• The gates in the counter are connected in such
a way as to produce the prescribed sequence
of states.



Registers

• The simplest register is one that
consists of only flip‐flops, without any
gates.
• Figure shows register constructed
with four D ‐type flip‐flops to form a
four‐bit data storage register.
• The common clock input triggers all 
flip‐flops on the positive edge of each 
pulse, and the binary data available
at the four inputs are transferred into 
the register.



Registers

• The input Clear_b goes to the active‐low R (reset)
input of all four flip‐flops.

• When this input goes to 0, all flip‐flops are reset
asynchronously.

• The Clear_b input is useful for clearing the
register to all 0’s prior to its clocked operation.

• The R inputs must be maintained at logic 1 during
normal clocked operation.

• Note:- Depending on the flip‐flop, either Clear,
Clear_b, reset, or reset_b can be used to indicate
the transfer of the register to an all 0’s state.



Register with Parallel Load

• The transfer of new information into a register is
referred to as loading or updating the register.

• If all the bits of the register are loaded
simultaneously with a common clock pulse, we
say that the loading is done in parallel.
– Load control: Determine when to load new

information

• A clock edge applied to the C inputs of the
register of above Fig.1 will load all four inputs in
parallel.



Register with Parallel Load

Approaches to register with parallel load
1. Controlling the clock input signal with an enabling

gate: uneven propagation delays between the master
clock and the inputs of flip-flops

2. Controlling the D inputs: ensure that all clock pulses
arrive at the same time anywhere in the system

• For synchronism, it is advisable to control the
operation of the register with the D inputs rather than
controlling the clock in the C inputs of the flip-flops.

• A four‐bit data‐storage register with a load control
input that is directed through gates and into the D
inputs of the flip‐flops is shown in below Fig.



FIG: Four‐bit register 
with parallel load



Register with Parallel Load

• The load input to the register determines the
action to be taken with each clock pulse.

• When the load input is 1, the data at the four
external inputs are transferred into the
register with the next positive edge of the
clock.

• When the load input is 0, the outputs of the
flip‐flops are connected to their respective
inputs.



Register with Parallel Load

• The feedback connection from output to input
is necessary because a D flip‐flop does not
have a “no change” condition.

• The clock pulses are applied to the C inputs
without interruption.



SHIFT REGISTERS

• A register capable of shifting its binary
information in one or both direction is called a
shift register.

• The logical configuration of a shift register
consists of a chain of flip‐flops in cascade, with
the output of one flip‐flop connected to the input
of the next flip‐flop.

• All flip‐flops receive common clock pulses, which
activate the shift of data from one stage to the
next.

• The simplest possible shift register is one that
uses only flip‐flops, as shown in Fig.



SHIFT REGISTERS

Fig: Four‐bit shift register

• The output of a given flip‐flop is
connected to the D input of the flip‐flop at
its right.
• This shift register is unidirectional
(left‐to‐right).



SHIFT REGISTERS

• Each clock pulse shifts the contents of the
register one bit position to the right.

• The configuration does not support a left shift.

• The serial input determines what goes into the
leftmost flip‐flop during the shift.

• The serial output is taken from the output of
the rightmost flip‐flop.





Serial Transfer

• A digital system is said to operate in serial mode
when information is transferred and manipulated
one bit at a time.

• Information is transferred one bit at a time by
shifting the bits out of the source register and
into the destination register.

• In parallel transfer all the bits of the register are
transferred at the same time.

• The serial transfer of information from register A
to register B is done with shift registers, as shown
in the below Fig.



Serial Transfer

Fig: serial transfer of information from register A to register B is done with shift registers

• The serial output (SO) of register A is
connected to the serial input (SI) of register B.



Serial Transfer

• To prevent the loss of information stored in the source
register, the information in register A is made to
circulate by connecting the serial output to its serial
input.

• The initial content of register B is shifted out through
its serial output and is lost unless it is transferred to a
third shift register.

• The shift control input determines when and how
many times the registers are shifted.

• This is done with an AND gate that allows clock pulses
to pass into the CLK terminals only when the shift
control is active.



Serial Transfer

• The shift control signal is synchronized with the clock
and changes value just after the negative edge of the
clock.



Serial Transfer

• The next four clock pulses find the shift control signal
in the active state, so the output of the AND gate
connected to the CLK inputs produces four pulses: T1,
T2, T3, and T4.

• Each rising edge of the pulse causes a shift in both
registers.

• The fourth pulse changes the shift control to 0, and the
shift registers are disabled.

• Assume that the binary content of A before the shift is
1011 and that of B is 0010.

• The serial transfer from A to B occurs in four steps, as
shown in below Table.



Serial Transfer Example

• In the parallel mode, information is available from all bits
can be transferred simultaneously during one clock pulse.
• In the serial mode, the registers have single serial input and
a single serial output.
• The information is transferred one bit at a time while the
registers are shifted in the same direction.



Serial Addition
• Operations in digital computers are usually done

in parallel because that is a faster mode of
operation.

• Serial operations are slower because a datapath
operation takes several clock cycles, but serial
operations have the advantage of requiring fewer
hardware components.

• The two binary numbers to be added serially are
stored in two shift registers.

• The bits of two binary numbers are added one
pair at a time through a single full adder (FA)
circuit as shown in below Fig.



Serial Addition



Serial Addition

• operation of the serial adder is as follows:
Initially, register A holds the augend, register B
holds the addend, and the carry flip‐flop is
cleared to 0.

• Shift control enables the triggering of clock and 1-
bit addition of two operands from LSB to MSB.

• A new sum (S) bit is transferred to shift register A
• A carry-out (C) of the Full Adder is transferred to

Q as the z input of the next addition.
• Finally, when the shift control is disabled,

summation result is stored in shift register A.



Serial Addition

• Initially, register A and the carry flip‐flop are cleared to
0, and then the first number is added from B.

• While B is shifted through the full adder, a second
number is transferred to it through its serial input.

• The second number is then added to the contents of
register A , while a third number is transferred serially
into register B.

• This can be repeated to perform the addition of two,
three, or more four‐bit numbers and accumulate their
sum in register A.





Universal Shift Register
• The most general shift register has the following capabilities:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift‐right control to enable the shift‐right operation and the
serial input and output lines associated with the shift right.

4. A shift‐left control to enable the shift‐left operation and the
serial input and output lines associated with the shift left.

5. A parallel‐load control to enable a parallel transfer and the n
input lines associated with the parallel transfer.

6. n parallel output lines.

7. A control state that leaves the information in the register
unchanged in response to the clock. Other shift registers may
have only some of the preceding functions, with at least one
shift operation.



Universal Shift Register

• A register capable of shifting in one direction only is
a unidirectional shift register.

• One that can shift in both directions is a bidirectional
shift register.

• If the register has both shifts and parallel‐load
capabilities, it is referred to as a universal shift
register.

• The block diagram symbol and the circuit diagram of
a four‐bit universal shift register that has all the
capabilities just listed are shown in below Fig.



Universal Shift Register

Functional Table

Fig: Graphic symbol



Universal Shift Register



Universal Shift Register

• The circuit consists of four D flip‐flops and four
multiplexers.

• The four multiplexers have two common
selection inputs s1 and s0.

• Input 0 in each multiplexer is selected when
s1s0=00, input 1 is selected when s1s0=01, and
similarly for the other two inputs.



Universal Shift Register

• Shift registers are often used to interface digital systems situated
remotely from each other.

• If the distance is far, it will be expensive to use n lines to
transmit the n bits in parallel.

• It is more economical to use a single line and transmit the
information serially, one bit at a time.

• The transmitter accepts the n‐bit data in parallel into a shift
register and then transmits the data serially along the common
line.

• The receiver accepts the data serially into a shift register.

• When all n bits are received, they can be taken from the outputs
of the register in parallel.

• The transmitter performs a parallel‐to‐serial conversion of data
and the receiver does a serial‐to‐parallel conversion.



Ripple Counters

• A register that goes through a prescribed sequence of
states (i.e counts upward or downward) upon the
application of input pulses is called a counter.

• The input pulses may be clock pulses, or they may
originate from some external source and may occur at
a fixed interval of time or at random.

• The sequence of states may follow the binary number
sequence or any other sequence of states.

• A counter that follows the binary number sequence is
called a binary counter.

• An n‐bit binary counter consists of n flip‐flops and can
count in binary from 0 through 2^n-1.



Ripple Counters

• Counters are available in two categories: ripple
counters and synchronous counters.

• In a ripple counter, a flip‐flop output transition
serves as a source for triggering other flip‐flops.
i.e., the C input of some or all flip‐flops are
triggered, not by the common clock pulses, but
rather by the transition that occurs in other
flip‐flop outputs.

• In a synchronous counter, the C inputs of all
flip‐flops receive the common clock.



Binary Ripple Counter

• A binary ripple counter consists of a series connection of
complementing flip‐flops, with the output of each flip‐flop
connected to the C input of the next higher order flip‐flop. i.e.,
the output of each flip‐flop is connected to the C input of the
next flip‐flop in sequence.

• The flip‐flop holding the least significant bit receives the
incoming count pulses.

• A complementing flip‐flop can be obtained from

– JK flip‐flop with the J and K inputs tied together

– T flip‐flop

– D flip‐flop with the complement output connected to the D
input.



Fig: With T flip-flops Fig: With D flip-flops



Binary countdown counter

• A binary counter with a reverse count is called a binary
countdown counter.

• In a countdown counter, the binary count is
decremented by 1 with every input count pulse.

• The count of a four‐bit countdown counter starts from
binary 15 and continues to binary counts 14, 13, 12, . . .
, 0 and then back to 15.

• A list of the count sequence of a binary countdown
counter shows that the least significant bit is
complemented with every count pulse.

• Any other bit in the sequence is complemented if its
previous least significant bit goes from 0 to 1.



Binary countdown counter

• Diagram: The bubble in the C inputs must be
absent in binary ripple counter.

• If negative‐edge‐triggered flip‐flops are used,
then the C input of each flip‐flop must be
connected to the complemented output of
the previous flip‐flop.

• Then, when the true output goes from 0 to 1,
the complement will go from 1 to 0 and
complement the next flip‐flop as required.



BCD Ripple Counter

• A decimal counter follows a sequence of 10 states and
returns to 0 after the count of 9.

• Such counter must have at least four flip‐flops to
represent each decimal digit, since a decimal digit is
represented by a binary code with at least four bits.

• If BCD is used, the sequence of states is as shown in the
state diagram of below Fig.

• A decimal counter is similar to a binary counter, except
that the state after 1001 (the code for decimal digit 9)
is 0000 (the code for decimal digit 0).



BCD Ripple Counter

• If BCD is used, the sequence of states is as shown
in the state diagram of below Fig.

Fig: State diagram of a decimal BCD counter

• The logic diagram of a BCD ripple counter using
JK flip‐flops is shown in below Fig.



BCD Ripple Counter
• The four outputs are
designated by the letter
symbol Q, with a numeric
subscript equal to the binary
weight of the corresponding
bit in the BCD code.



BCD Ripple Counter

• The four outputs are designated by the letter
symbol Q, with a numeric subscript equal to
the binary weight of the corresponding bit in
the BCD code.

• Note: The output of Q1 is applied to the C
inputs of both Q2 and Q8 and the output of
Q2 is applied to the C input of Q4. The J and K
inputs are connected either to a permanent 1
signal or to outputs of other flip‐flops.



BCD Ripple Counter

• A ripple counter is an asynchronous sequential
circuit.

• Signals that affect the flip‐flop transition depend
on the way they change from 1 to 0.

• The operation of the counter can be explained by
a list of conditions for flip‐flop transitions.

• These conditions are derived from the logic
diagram and from knowledge of how a JK flip‐flop
operates.

• Remember that when the C input goes from 1 to
0, the flip‐flop is set if J=1, is cleared if K=1, is
complemented if J=K=1, and is left unchanged if
J=K=0.



BCD Ripple Counter

• To verify that these conditions result in the
sequence required by a BCD ripple counter, it
is necessary to verify that the flip‐flop
transitions indeed follow a sequence of states
as specified by the state diagram.



Three-Decade BCD Counter

• The BCD counter of above Fig. is a decade
counter, since it counts from 0 to 9.

• To count in decimal from 0 to 99, we need a
two‐decade counter.

• To count from 0 to 999, we need a three‐decade
counter.

• Multiple decade counters can be constructed by
connecting BCD counters in cascade, one for each
decade.

• A three‐decade counter is shown in above Fig.



Three-Decade BCD Counter

• The inputs to the second and third decades
come from Q8 of the previous decade.

• When Q8 in one decade goes from 1 to 0, it
triggers the count for the next higher order
decade while its own decade goes from 9 to 0.



SYNCHRONOUS COUNTERS

• Synchronous counters are different from ripple
counters in that clock pulses are applied to the inputs
of all flip‐flops.

• A common clock triggers all flip‐flops simultaneously,
rather than one at a time in succession as in a ripple
counter.

• The decision whether a flip‐flop is to be complemented
is determined from the values of the data inputs, such
as T or J and K at the time of the clock edge.

• If T=0 or J=K=0, the flip‐flop does not change state.

• If T=1 or J=K=1, the flip‐flop complements.



Binary Counter

• The design of a synchronous binary counter is
so simple that there is no need to go through
a sequential logic design process.

• In a synchronous binary counter, the flip‐flop
in the least significant position is
complemented with every pulse.

• A flip‐flop in any other position is
complemented when all the bits in the lower
significant positions are equal to 1 .



Binary Counter

• For example, if the present state of a
four‐bit counter is A3A2A1A0 = 0011, the
next count is 0100.

• A0 is always complemented.

• A1 is complemented because the present
state of A0 = 1.

• A2 is complemented because the present
state of A1A0 = 11.

• However, A3 is not complemented,
because the present state of A2A1A0 = 011,
which does not give an all‐1’s condition.



Binary Counter
• Synchronous binary

counters have a regular
pattern and can be
constructed with
complementing flip‐flops
and gates.

• The regular pattern can be
seen from the four‐bit
counter depicted in Fig.



Binary Counter

• The C inputs of all flip‐flops are connected to a common clock.

• The counter is enabled by Count_enable.

• If the enable input is 0, all J and K inputs are equal to 0 and
the clock does not change the state of the counter.

• The first stage, A0, has its J and K equal to 1 if the counter is
enabled.

• The other J and K inputs are equal to 1 if all previous least
significant stages are equal to 1 and the count is enabled.

• The chain of AND gates generates the required logic for the J
and K inputs in each stage.



Binary Counter

• The counter can be extended to any number of stages, with
each stage having an additional flip‐flop and an AND gate that
gives an output of 1 if all previous flip‐flop outputs are 1.

Note:-

• The flip‐flops trigger on the positive edge of the clock.

• The polarity of the clock is not essential here, but it is with the
ripple counter.

• The synchronous counter can be triggered with either the
positive or the negative clock edge.

• The complementing flip‐flops in a binary counter can be of
either the JK type, the T type, or the D type with XOR gates.



Up–Down Binary Counter

• The two operations can be combined in one
circuit to form a counter capable of counting
either up or down.

• The circuit of an up–down binary counter
using T flip‐flops is shown in below Fig.

• It has an up control input and a down control
input.

Up Down Operation

0 0 No change

0 1 Count Down

1 x Count Up



Up–Down 
Binary 

Counter
• When the up input is 1, the
circuit counts up, since the T
inputs receive their signals from
the values of the previous normal
outputs of the flip‐flops.
• When the down input is 1 and
the up input is 0, the circuit counts
down, since the complemented
outputs of the previous flip‐flops
are applied to the T inputs.



Up–Down Binary Counter

• When the up and down inputs are both 0, the
circuit does not change state and remains in the
same count.

• When the up and down inputs are both 1, the
circuit counts up.

• This set of conditions ensures that only one
operation is performed at any given time.

Note:

• The up input has priority over the down input.



BCD Counter

• A BCD counter counts in binary‐coded decimal
from 0000 to 1001 and back to 0000.

• Because of the return to 0 after a count of 9, a
BCD counter does not have a regular pattern,
unlike a straight binary count.

• To derive the circuit of a BCD synchronous
counter, it is necessary to go through a
sequential circuit design procedure.



BCD Counter

• The state table of a BCD counter is listed in
below Table.



BCD Counter

• The input conditions for the T flip‐flops are
obtained from the present‐ and next‐state
conditions.

• Also shown in the table is an output y, which is
equal to 1 when the present state is 1001.

• In this way, y can enable the count of the
next‐higher significant decade while the same
pulse switches the present decade from 1001
to 0000.



BCD Counter

• The flip‐flop input equations can be simplified by
means of maps.

• The unused states for minterms 10 to 15 are taken as
don’t‐care terms.

• The simplified functions are -



BCD Counter

• The circuit can easily be drawn with four T
flip‐flops, five AND gates, and one OR gate.

• Synchronous BCD counters can be cascaded to
form a counter for decimal numbers of any
length.

• The cascading is done as in Fig. (Block diagram of
a three‐decade decimal BCD counter), except that
output y must be connected to the count input of
the next‐higher significant decade.



Binary Counter with Parallel Load

• Counters employed in digital systems quite often require a
parallel‐load capability for transferring an initial binary
number into the counter prior to the count operation.

• The below Fig. shows the top‐level block diagram symbol and
the logic diagram of a four‐bit register that has a parallel load
capability and can operate as a counter.

• When input load control equal’s to 1 it disables the count
operation and causes a transfer of data from the four data
inputs into the four flip‐flops.

• If both control inputs are 0, clock pulses do not change the
state of the register.



Binary Counter with Parallel Load

• The carry output becomes 1 if all the flip‐flops are equal to 1
while the count input is enabled.

• This is the condition for complementing the flip‐flop that
holds the next significant bit.

• The carry output is useful for expanding the counter to more
than four bits.

• The speed of the counter is increased when the carry is
generated directly from the outputs of all four flip‐flops,
because the delay to generate the carry bit is reduced.

• In going from state 1111 to 0000, only one gate delay occurs.

• Similarly, each flip‐flop is associated with an AND gate that
receives all previous flip‐flop outputs directly instead of
connecting the AND gates in a chain.



Binary Counter with Parallel Load

Fig: Block Diagram of a four‐bit register that has a parallel load capability and can 
operate as a counter

Table: Function Table for the Counter



Binary 
Counter 

with 
Parallel 

Load



Binary Counter with Parallel Load

• A counter with a parallel load can be used to
generate any desired count sequence.

• Below Fig. shows two ways in which a counter
with a parallel load is used to generate the BCD
count.

• In each case, the Count control is set to 1 to
enable the count through the CLK input.

• The Load control inhibits the count and that the
clear operation is independent of other control
inputs.



Binary Counter with Parallel Load

• The AND gate in below Fig. detects the occurrence of state 1001.

• The counter is initially cleared to 0, and then the Clear and Count
inputs are set to 1, so the counter is active at all times.

• As long as the output of the AND gate is 0, each positive‐edge clock
increments the counter by 1.

• When the output reaches the count of 1001, both A0 and A3

become 1, making the output of the AND gate equal to 1.

• This condition activates the Load input; therefore, on the next clock
edge the register does not count, but is loaded from its four inputs.

• Since all four inputs are connected to logic 0, an all‐0’s value is
loaded into the register following the count of 1001.

• Thus, the circuit goes through the count from 0000 through 1001
and back to 0000, as is required in a BCD counter.



Binary Counter with Parallel Load

Load “0000” after “1001” The AND detects the
occurrence of state
1001 and then the
counter reloads 0000



Binary Counter with Parallel Load

• In below Fig. the NAND gate detects the count of 1010, but as
soon as this count occurs, the register is cleared.

• The count 1010 has no chance of staying on for any
appreciable time, because the register goes immediately to 0.

• A momentary spike occurs in output A0 as the count goes
from 1010 to 1011 and immediately to 0000.

• The spike may be undesirable, and for that reason, this
configuration is not recommended.

• If the counter has a synchronous clear input, it is possible to
clear the counter with the clock after an occurrence of the
1001 count.



Binary Counter with Parallel Load
Clear to “0000” immediately at “1010”

The NAND detects the
occurrence of state 1010
and then the counter is
cleared to 0


	DLD & CO Unit-3
	Syllabus
	Introduction
	Register
	Counter
	Registers
	Registers
	Register with Parallel Load
	Register with Parallel Load
	Slide 10 
	Register with Parallel Load
	Register with Parallel Load
	SHIFT REGISTERS
	SHIFT REGISTERS
	SHIFT REGISTERS
	Slide 16 
	Serial Transfer
	Serial Transfer
	Serial Transfer
	Serial Transfer
	Serial Transfer
	Serial Transfer Example
	Serial Addition
	Serial Addition
	Serial Addition
	Serial Addition
	Slide 27 
	Universal Shift Register
	Universal Shift Register
	Universal Shift Register
	Universal Shift Register
	Universal Shift Register
	Universal Shift Register
	Ripple Counters
	Ripple Counters
	Binary Ripple Counter
	Slide 41 
	Binary countdown counter
	Binary countdown counter
	BCD Ripple Counter
	BCD Ripple Counter
	BCD Ripple Counter
	BCD Ripple Counter
	BCD Ripple Counter
	BCD Ripple Counter
	Three-Decade BCD Counter
	Three-Decade BCD Counter
	SYNCHRONOUS COUNTERS
	Binary Counter
	Binary Counter
	Binary Counter
	Binary Counter
	Binary Counter
	Up–Down Binary Counter
	Up–Down Binary Counter
	Up–Down Binary Counter
	BCD Counter
	BCD Counter
	BCD Counter
	BCD Counter
	BCD Counter
	Binary Counter with Parallel Load
	Binary Counter with Parallel Load
	Binary Counter with Parallel Load
	Binary Counter with Parallel Load
	Binary Counter with Parallel Load

